|
|
- ////////////////////////////////////////////////////////////////
- //
- // HG_SDF
- //
- // GLSL LIBRARY FOR BUILDING SIGNED DISTANCE BOUNDS
- //
- // version 2016-01-10
- //
- // Check http://mercury.sexy/hg_sdf for updates
- // and usage examples. Send feedback to spheretracing@mercury.sexy.
- //
- // Brought to you by MERCURY http://mercury.sexy
- //
- //
- //
- // Released as Creative Commons Attribution-NonCommercial (CC BY-NC)
- //
- ////////////////////////////////////////////////////////////////
- //
- // How to use this:
- //
- // 1. Build some system to #include glsl files in each other.
- // Include this one at the very start. Or just paste everywhere.
- // 2. Build a sphere tracer. See those papers:
- // * "Sphere Tracing" http://graphics.cs.illinois.edu/sites/default/files/zeno.pdf
- // * "Enhanced Sphere Tracing" http://lgdv.cs.fau.de/get/2234
- // The Raymnarching Toolbox Thread on pouet can be helpful as well
- // http://www.pouet.net/topic.php?which=7931&page=1
- // and contains links to many more resources.
- // 3. Use the tools in this library to build your distance bound f().
- // 4. ???
- // 5. Win a compo.
- //
- // (6. Buy us a beer or a good vodka or something, if you like.)
- //
- ////////////////////////////////////////////////////////////////
- //
- // Table of Contents:
- //
- // * Helper functions and macros
- // * Collection of some primitive objects
- // * Domain Manipulation operators
- // * Object combination operators
- //
- ////////////////////////////////////////////////////////////////
- //
- // Why use this?
- //
- // The point of this lib is that everything is structured according
- // to patterns that we ended up using when building geometry.
- // It makes it more easy to write code that is reusable and that somebody
- // else can actually understand. Especially code on Shadertoy (which seems
- // to be what everybody else is looking at for "inspiration") tends to be
- // really ugly. So we were forced to do something about the situation and
- // release this lib ;)
- //
- // Everything in here can probably be done in some better way.
- // Please experiment. We'd love some feedback, especially if you
- // use it in a scene production.
- //
- // The main patterns for building geometry this way are:
- // * Stay Lipschitz continuous. That means: don't have any distance
- // gradient larger than 1. Try to be as close to 1 as possible -
- // Distances are euclidean distances, don't fudge around.
- // Underestimating distances will happen. That's why calling
- // it a "distance bound" is more correct. Don't ever multiply
- // distances by some value to "fix" a Lipschitz continuity
- // violation. The invariant is: each fSomething() function returns
- // a correct distance bound.
- // * Use very few primitives and combine them as building blocks
- // using combine opertors that preserve the invariant.
- // * Multiply objects by repeating the domain (space).
- // If you are using a loop inside your distance function, you are
- // probably doing it wrong (or you are building boring fractals).
- // * At right-angle intersections between objects, build a new local
- // coordinate system from the two distances to combine them in
- // interesting ways.
- // * As usual, there are always times when it is best to not follow
- // specific patterns.
- //
- ////////////////////////////////////////////////////////////////
- //
- // FAQ
- //
- // Q: Why is there no sphere tracing code in this lib?
- // A: Because our system is way too complex and always changing.
- // This is the constant part. Also we'd like everyone to
- // explore for themselves.
- //
- // Q: This does not work when I paste it into Shadertoy!!!!
- // A: Yes. It is GLSL, not GLSL ES. We like real OpenGL
- // because it has way more features and is more likely
- // to work compared to browser-based WebGL. We recommend
- // you consider using OpenGL for your productions. Most
- // of this can be ported easily though.
- //
- // Q: How do I material?
- // A: We recommend something like this:
- // Write a material ID, the distance and the local coordinate
- // p into some global variables whenever an object's distance is
- // smaller than the stored distance. Then, at the end, evaluate
- // the material to get color, roughness, etc., and do the shading.
- //
- // Q: I found an error. Or I made some function that would fit in
- // in this lib. Or I have some suggestion.
- // A: Awesome! Drop us a mail at spheretracing@mercury.sexy.
- //
- // Q: Why is this not on github?
- // A: Because we were too lazy. If we get bugged about it enough,
- // we'll do it.
- //
- // Q: Your license sucks for me.
- // A: Oh. What should we change it to?
- //
- // Q: I have trouble understanding what is going on with my distances.
- // A: Some visualization of the distance field helps. Try drawing a
- // plane that you can sweep through your scene with some color
- // representation of the distance field at each point and/or iso
- // lines at regular intervals. Visualizing the length of the
- // gradient (or better: how much it deviates from being equal to 1)
- // is immensely helpful for understanding which parts of the
- // distance field are broken.
- //
- ////////////////////////////////////////////////////////////////
-
-
-
-
-
-
- ////////////////////////////////////////////////////////////////
- //
- // HELPER FUNCTIONS/MACROS
- //
- ////////////////////////////////////////////////////////////////
-
- #define PI 3.14159265
- #define TAU (2*PI)
- #define PHI (sqrt(5)*0.5 + 0.5)
-
- // Clamp to [0,1] - this operation is free under certain circumstances.
- // For further information see
- // http://www.humus.name/Articles/Persson_LowLevelThinking.pdf and
- // http://www.humus.name/Articles/Persson_LowlevelShaderOptimization.pdf
- #define saturate(x) clamp(x, 0, 1)
-
- // Sign function that doesn't return 0
- float sgn(float x) {
- return (x<0)?-1.:1.;
- }
-
- vec2 sgn(vec2 v) {
- return vec2((v.x<0)?-1:1, (v.y<0)?-1:1);
- }
-
- float square (float x) {
- return x*x;
- }
-
- vec2 square (vec2 x) {
- return x*x;
- }
-
- vec3 square (vec3 x) {
- return x*x;
- }
-
- float lengthSqr(vec3 x) {
- return dot(x, x);
- }
-
-
- // Maximum/minumum elements of a vector
- float vmax(vec2 v) {
- return max(v.x, v.y);
- }
-
- float vmax(vec3 v) {
- return max(max(v.x, v.y), v.z);
- }
-
- float vmax(vec4 v) {
- return max(max(v.x, v.y), max(v.z, v.w));
- }
-
- float vmin(vec2 v) {
- return min(v.x, v.y);
- }
-
- float vmin(vec3 v) {
- return min(min(v.x, v.y), v.z);
- }
-
- float vmin(vec4 v) {
- return min(min(v.x, v.y), min(v.z, v.w));
- }
-
-
-
-
- ////////////////////////////////////////////////////////////////
- //
- // PRIMITIVE DISTANCE FUNCTIONS
- //
- ////////////////////////////////////////////////////////////////
- //
- // Conventions:
- //
- // Everything that is a distance function is called fSomething.
- // The first argument is always a point in 2 or 3-space called <p>.
- // Unless otherwise noted, (if the object has an intrinsic "up"
- // side or direction) the y axis is "up" and the object is
- // centered at the origin.
- //
- ////////////////////////////////////////////////////////////////
-
- float fSphere(vec3 p, float r) {
- return length(p) - r;
- }
-
- // Plane with normal n (n is normalized) at some distance from the origin
- float fPlane(vec3 p, vec3 n, float distanceFromOrigin) {
- return dot(p, n) + distanceFromOrigin;
- }
-
- // Cheap Box: distance to corners is overestimated
- float fBoxCheap(vec3 p, vec3 b) { //cheap box
- return vmax(abs(p) - b);
- }
-
- // Box: correct distance to corners
- float fBox(vec3 p, vec3 b) {
- vec3 d = abs(p) - b;
- return length(max(d, vec3(0))) + vmax(min(d, vec3(0)));
- }
-
- // Same as above, but in two dimensions (an endless box)
- float fBox2Cheap(vec2 p, vec2 b) {
- return vmax(abs(p)-b);
- }
-
- float fBox2(vec2 p, vec2 b) {
- vec2 d = abs(p) - b;
- return length(max(d, vec2(0))) + vmax(min(d, vec2(0)));
- }
-
-
- // Endless "corner"
- float fCorner (vec2 p) {
- return length(max(p, vec2(0))) + vmax(min(p, vec2(0)));
- }
-
- // Blobby ball object. You've probably seen it somewhere. This is not a correct distance bound, beware.
- float fBlob(vec3 p) {
- p = abs(p);
- if (p.x < max(p.y, p.z)) p = p.yzx;
- if (p.x < max(p.y, p.z)) p = p.yzx;
- float b = max(max(max(
- dot(p, normalize(vec3(1, 1, 1))),
- dot(p.xz, normalize(vec2(PHI+1, 1)))),
- dot(p.yx, normalize(vec2(1, PHI)))),
- dot(p.xz, normalize(vec2(1, PHI))));
- float l = length(p);
- return l - 1.5 - 0.2 * (1.5 / 2)* cos(min(sqrt(1.01 - b / l)*(PI / 0.25), PI));
- }
-
- // Cylinder standing upright on the xz plane
- float fCylinder(vec3 p, float r, float height) {
- float d = length(p.xz) - r;
- d = max(d, abs(p.y) - height);
- return d;
- }
-
- // Capsule: A Cylinder with round caps on both sides
- float fCapsule(vec3 p, float r, float c) {
- return mix(length(p.xz) - r, length(vec3(p.x, abs(p.y) - c, p.z)) - r, step(c, abs(p.y)));
- }
-
- // Distance to line segment between <a> and <b>, used for fCapsule() version 2below
- float fLineSegment(vec3 p, vec3 a, vec3 b) {
- vec3 ab = b - a;
- float t = saturate(dot(p - a, ab) / dot(ab, ab));
- return length((ab*t + a) - p);
- }
-
- // Capsule version 2: between two end points <a> and <b> with radius r
- float fCapsule(vec3 p, vec3 a, vec3 b, float r) {
- return fLineSegment(p, a, b) - r;
- }
-
- // Torus in the XZ-plane
- float fTorus(vec3 p, float smallRadius, float largeRadius) {
- return length(vec2(length(p.xz) - largeRadius, p.y)) - smallRadius;
- }
-
- // A circle line. Can also be used to make a torus by subtracting the smaller radius of the torus.
- float fCircle(vec3 p, float r) {
- float l = length(p.xz) - r;
- return length(vec2(p.y, l));
- }
-
- // A circular disc with no thickness (i.e. a cylinder with no height).
- // Subtract some value to make a flat disc with rounded edge.
- float fDisc(vec3 p, float r) {
- float l = length(p.xz) - r;
- return l < 0 ? abs(p.y) : length(vec2(p.y, l));
- }
-
- // Hexagonal prism, circumcircle variant
- float fHexagonCircumcircle(vec3 p, vec2 h) {
- vec3 q = abs(p);
- return max(q.y - h.y, max(q.x*sqrt(3)*0.5 + q.z*0.5, q.z) - h.x);
- //this is mathematically equivalent to this line, but less efficient:
- //return max(q.y - h.y, max(dot(vec2(cos(PI/3), sin(PI/3)), q.zx), q.z) - h.x);
- }
-
- // Hexagonal prism, incircle variant
- float fHexagonIncircle(vec3 p, vec2 h) {
- return fHexagonCircumcircle(p, vec2(h.x*sqrt(3)*0.5, h.y));
- }
-
- // Cone with correct distances to tip and base circle. Y is up, 0 is in the middle of the base.
- float fCone(vec3 p, float radius, float height) {
- vec2 q = vec2(length(p.xz), p.y);
- vec2 tip = q - vec2(0, height);
- vec2 mantleDir = normalize(vec2(height, radius));
- float mantle = dot(tip, mantleDir);
- float d = max(mantle, -q.y);
- float projected = dot(tip, vec2(mantleDir.y, -mantleDir.x));
-
- // distance to tip
- if ((q.y > height) && (projected < 0)) {
- d = max(d, length(tip));
- }
-
- // distance to base ring
- if ((q.x > radius) && (projected > length(vec2(height, radius)))) {
- d = max(d, length(q - vec2(radius, 0)));
- }
- return d;
- }
-
- //
- // "Generalized Distance Functions" by Akleman and Chen.
- // see the Paper at https://www.viz.tamu.edu/faculty/ergun/research/implicitmodeling/papers/sm99.pdf
- //
- // This set of constants is used to construct a large variety of geometric primitives.
- // Indices are shifted by 1 compared to the paper because we start counting at Zero.
- // Some of those are slow whenever a driver decides to not unroll the loop,
- // which seems to happen for fIcosahedron und fTruncatedIcosahedron on nvidia 350.12 at least.
- // Specialized implementations can well be faster in all cases.
- //
-
- const vec3 GDFVectors[19] = vec3[](
- normalize(vec3(1, 0, 0)),
- normalize(vec3(0, 1, 0)),
- normalize(vec3(0, 0, 1)),
-
- normalize(vec3(1, 1, 1 )),
- normalize(vec3(-1, 1, 1)),
- normalize(vec3(1, -1, 1)),
- normalize(vec3(1, 1, -1)),
-
- normalize(vec3(0, 1, PHI+1)),
- normalize(vec3(0, -1, PHI+1)),
- normalize(vec3(PHI+1, 0, 1)),
- normalize(vec3(-PHI-1, 0, 1)),
- normalize(vec3(1, PHI+1, 0)),
- normalize(vec3(-1, PHI+1, 0)),
-
- normalize(vec3(0, PHI, 1)),
- normalize(vec3(0, -PHI, 1)),
- normalize(vec3(1, 0, PHI)),
- normalize(vec3(-1, 0, PHI)),
- normalize(vec3(PHI, 1, 0)),
- normalize(vec3(-PHI, 1, 0))
- );
-
- // Version with variable exponent.
- // This is slow and does not produce correct distances, but allows for bulging of objects.
- float fGDF(vec3 p, float r, float e, int begin, int end) {
- float d = 0;
- for (int i = begin; i <= end; ++i)
- d += pow(abs(dot(p, GDFVectors[i])), e);
- return pow(d, 1/e) - r;
- }
-
- // Version with without exponent, creates objects with sharp edges and flat faces
- float fGDF(vec3 p, float r, int begin, int end) {
- float d = 0;
- for (int i = begin; i <= end; ++i)
- d = max(d, abs(dot(p, GDFVectors[i])));
- return d - r;
- }
-
- // Primitives follow:
-
- float fOctahedron(vec3 p, float r, float e) {
- return fGDF(p, r, e, 3, 6);
- }
-
- float fDodecahedron(vec3 p, float r, float e) {
- return fGDF(p, r, e, 13, 18);
- }
-
- float fIcosahedron(vec3 p, float r, float e) {
- return fGDF(p, r, e, 3, 12);
- }
-
- float fTruncatedOctahedron(vec3 p, float r, float e) {
- return fGDF(p, r, e, 0, 6);
- }
-
- float fTruncatedIcosahedron(vec3 p, float r, float e) {
- return fGDF(p, r, e, 3, 18);
- }
-
- float fOctahedron(vec3 p, float r) {
- return fGDF(p, r, 3, 6);
- }
-
- float fDodecahedron(vec3 p, float r) {
- return fGDF(p, r, 13, 18);
- }
-
- float fIcosahedron(vec3 p, float r) {
- return fGDF(p, r, 3, 12);
- }
-
- float fTruncatedOctahedron(vec3 p, float r) {
- return fGDF(p, r, 0, 6);
- }
-
- float fTruncatedIcosahedron(vec3 p, float r) {
- return fGDF(p, r, 3, 18);
- }
-
-
- ////////////////////////////////////////////////////////////////
- //
- // DOMAIN MANIPULATION OPERATORS
- //
- ////////////////////////////////////////////////////////////////
- //
- // Conventions:
- //
- // Everything that modifies the domain is named pSomething.
- //
- // Many operate only on a subset of the three dimensions. For those,
- // you must choose the dimensions that you want manipulated
- // by supplying e.g. <p.x> or <p.zx>
- //
- // <inout p> is always the first argument and modified in place.
- //
- // Many of the operators partition space into cells. An identifier
- // or cell index is returned, if possible. This return value is
- // intended to be optionally used e.g. as a random seed to change
- // parameters of the distance functions inside the cells.
- //
- // Unless stated otherwise, for cell index 0, <p> is unchanged and cells
- // are centered on the origin so objects don't have to be moved to fit.
- //
- //
- ////////////////////////////////////////////////////////////////
-
-
-
- // Rotate around a coordinate axis (i.e. in a plane perpendicular to that axis) by angle <a>.
- // Read like this: R(p.xz, a) rotates "x towards z".
- // This is fast if <a> is a compile-time constant and slower (but still practical) if not.
- void pR(inout vec2 p, float a) {
- p = cos(a)*p + sin(a)*vec2(p.y, -p.x);
- }
-
- // Shortcut for 45-degrees rotation
- void pR45(inout vec2 p) {
- p = (p + vec2(p.y, -p.x))*sqrt(0.5);
- }
-
- // Repeat space along one axis. Use like this to repeat along the x axis:
- // <float cell = pMod1(p.x,5);> - using the return value is optional.
- float pMod1(inout float p, float size) {
- float halfsize = size*0.5;
- float c = floor((p + halfsize)/size);
- p = mod(p + halfsize, size) - halfsize;
- return c;
- }
-
- // Same, but mirror every second cell so they match at the boundaries
- float pModMirror1(inout float p, float size) {
- float halfsize = size*0.5;
- float c = floor((p + halfsize)/size);
- p = mod(p + halfsize,size) - halfsize;
- p *= mod(c, 2.0)*2 - 1;
- return c;
- }
-
- // Repeat the domain only in positive direction. Everything in the negative half-space is unchanged.
- float pModSingle1(inout float p, float size) {
- float halfsize = size*0.5;
- float c = floor((p + halfsize)/size);
- if (p >= 0)
- p = mod(p + halfsize, size) - halfsize;
- return c;
- }
-
- // Repeat only a few times: from indices <start> to <stop> (similar to above, but more flexible)
- float pModInterval1(inout float p, float size, float start, float stop) {
- float halfsize = size*0.5;
- float c = floor((p + halfsize)/size);
- p = mod(p+halfsize, size) - halfsize;
- if (c > stop) { //yes, this might not be the best thing numerically.
- p += size*(c - stop);
- c = stop;
- }
- if (c <start) {
- p += size*(c - start);
- c = start;
- }
- return c;
- }
-
-
- // Repeat around the origin by a fixed angle.
- // For easier use, num of repetitions is use to specify the angle.
- float pModPolar(inout vec2 p, float repetitions) {
- float angle = 2*PI/repetitions;
- float a = atan(p.y, p.x) + angle/2.;
- float r = length(p);
- float c = floor(a/angle);
- a = mod(a,angle) - angle/2.;
- p = vec2(cos(a), sin(a))*r;
- // For an odd number of repetitions, fix cell index of the cell in -x direction
- // (cell index would be e.g. -5 and 5 in the two halves of the cell):
- if (abs(c) >= (repetitions/2)) c = abs(c);
- return c;
- }
-
- // Repeat in two dimensions
- vec2 pMod2(inout vec2 p, vec2 size) {
- vec2 c = floor((p + size*0.5)/size);
- p = mod(p + size*0.5,size) - size*0.5;
- return c;
- }
-
- // Same, but mirror every second cell so all boundaries match
- vec2 pModMirror2(inout vec2 p, vec2 size) {
- vec2 halfsize = size*0.5;
- vec2 c = floor((p + halfsize)/size);
- p = mod(p + halfsize, size) - halfsize;
- p *= mod(c,vec2(2))*2 - vec2(1);
- return c;
- }
-
- // Same, but mirror every second cell at the diagonal as well
- vec2 pModGrid2(inout vec2 p, vec2 size) {
- vec2 c = floor((p + size*0.5)/size);
- p = mod(p + size*0.5, size) - size*0.5;
- p *= mod(c,vec2(2))*2 - vec2(1);
- p -= size/2;
- if (p.x > p.y) p.xy = p.yx;
- return floor(c/2);
- }
-
- // Repeat in three dimensions
- vec3 pMod3(inout vec3 p, vec3 size) {
- vec3 c = floor((p + size*0.5)/size);
- p = mod(p + size*0.5, size) - size*0.5;
- return c;
- }
-
- // Mirror at an axis-aligned plane which is at a specified distance <dist> from the origin.
- float pMirror (inout float p, float dist) {
- float s = sgn(p);
- p = abs(p)-dist;
- return s;
- }
-
- // Mirror in both dimensions and at the diagonal, yielding one eighth of the space.
- // translate by dist before mirroring.
- vec2 pMirrorOctant (inout vec2 p, vec2 dist) {
- vec2 s = sgn(p);
- pMirror(p.x, dist.x);
- pMirror(p.y, dist.y);
- if (p.y > p.x)
- p.xy = p.yx;
- return s;
- }
-
- // Reflect space at a plane
- float pReflect(inout vec3 p, vec3 planeNormal, float offset) {
- float t = dot(p, planeNormal)+offset;
- if (t < 0) {
- p = p - (2*t)*planeNormal;
- }
- return sgn(t);
- }
-
-
- ////////////////////////////////////////////////////////////////
- //
- // OBJECT COMBINATION OPERATORS
- //
- ////////////////////////////////////////////////////////////////
- //
- // We usually need the following boolean operators to combine two objects:
- // Union: OR(a,b)
- // Intersection: AND(a,b)
- // Difference: AND(a,!b)
- // (a and b being the distances to the objects).
- //
- // The trivial implementations are min(a,b) for union, max(a,b) for intersection
- // and max(a,-b) for difference. To combine objects in more interesting ways to
- // produce rounded edges, chamfers, stairs, etc. instead of plain sharp edges we
- // can use combination operators. It is common to use some kind of "smooth minimum"
- // instead of min(), but we don't like that because it does not preserve Lipschitz
- // continuity in many cases.
- //
- // Naming convention: since they return a distance, they are called fOpSomething.
- // The different flavours usually implement all the boolean operators above
- // and are called fOpUnionRound, fOpIntersectionRound, etc.
- //
- // The basic idea: Assume the object surfaces intersect at a right angle. The two
- // distances <a> and <b> constitute a new local two-dimensional coordinate system
- // with the actual intersection as the origin. In this coordinate system, we can
- // evaluate any 2D distance function we want in order to shape the edge.
- //
- // The operators below are just those that we found useful or interesting and should
- // be seen as examples. There are infinitely more possible operators.
- //
- // They are designed to actually produce correct distances or distance bounds, unlike
- // popular "smooth minimum" operators, on the condition that the gradients of the two
- // SDFs are at right angles. When they are off by more than 30 degrees or so, the
- // Lipschitz condition will no longer hold (i.e. you might get artifacts). The worst
- // case is parallel surfaces that are close to each other.
- //
- // Most have a float argument <r> to specify the radius of the feature they represent.
- // This should be much smaller than the object size.
- //
- // Some of them have checks like "if ((-a < r) && (-b < r))" that restrict
- // their influence (and computation cost) to a certain area. You might
- // want to lift that restriction or enforce it. We have left it as comments
- // in some cases.
- //
- // usage example:
- //
- // float fTwoBoxes(vec3 p) {
- // float box0 = fBox(p, vec3(1));
- // float box1 = fBox(p-vec3(1), vec3(1));
- // return fOpUnionChamfer(box0, box1, 0.2);
- // }
- //
- ////////////////////////////////////////////////////////////////
-
-
- // The "Chamfer" flavour makes a 45-degree chamfered edge (the diagonal of a square of size <r>):
- float fOpUnionChamfer(float a, float b, float r) {
- return min(min(a, b), (a - r + b)*sqrt(0.5));
- }
-
- // Intersection has to deal with what is normally the inside of the resulting object
- // when using union, which we normally don't care about too much. Thus, intersection
- // implementations sometimes differ from union implementations.
- float fOpIntersectionChamfer(float a, float b, float r) {
- return max(max(a, b), (a + r + b)*sqrt(0.5));
- }
-
- // Difference can be built from Intersection or Union:
- float fOpDifferenceChamfer (float a, float b, float r) {
- return fOpIntersectionChamfer(a, -b, r);
- }
-
- // The "Round" variant uses a quarter-circle to join the two objects smoothly:
- float fOpUnionRound(float a, float b, float r) {
- vec2 u = max(vec2(r - a,r - b), vec2(0));
- return max(r, min (a, b)) - length(u);
- }
-
- float fOpIntersectionRound(float a, float b, float r) {
- vec2 u = max(vec2(r + a,r + b), vec2(0));
- return min(-r, max (a, b)) + length(u);
- }
-
- float fOpDifferenceRound (float a, float b, float r) {
- return fOpIntersectionRound(a, -b, r);
- }
-
-
- // The "Columns" flavour makes n-1 circular columns at a 45 degree angle:
- float fOpUnionColumns(float a, float b, float r, float n) {
- if ((a < r) && (b < r)) {
- vec2 p = vec2(a, b);
- float columnradius = r*sqrt(2)/((n-1)*2+sqrt(2));
- pR45(p);
- p.x -= sqrt(2)/2*r;
- p.x += columnradius*sqrt(2);
- if (mod(n,2) == 1) {
- p.y += columnradius;
- }
- // At this point, we have turned 45 degrees and moved at a point on the
- // diagonal that we want to place the columns on.
- // Now, repeat the domain along this direction and place a circle.
- pMod1(p.y, columnradius*2);
- float result = length(p) - columnradius;
- result = min(result, p.x);
- result = min(result, a);
- return min(result, b);
- } else {
- return min(a, b);
- }
- }
-
- float fOpDifferenceColumns(float a, float b, float r, float n) {
- a = -a;
- float m = min(a, b);
- //avoid the expensive computation where not needed (produces discontinuity though)
- if ((a < r) && (b < r)) {
- vec2 p = vec2(a, b);
- float columnradius = r*sqrt(2)/n/2.0;
- columnradius = r*sqrt(2)/((n-1)*2+sqrt(2));
-
- pR45(p);
- p.y += columnradius;
- p.x -= sqrt(2)/2*r;
- p.x += -columnradius*sqrt(2)/2;
-
- if (mod(n,2) == 1) {
- p.y += columnradius;
- }
- pMod1(p.y,columnradius*2);
-
- float result = -length(p) + columnradius;
- result = max(result, p.x);
- result = min(result, a);
- return -min(result, b);
- } else {
- return -m;
- }
- }
-
- float fOpIntersectionColumns(float a, float b, float r, float n) {
- return fOpDifferenceColumns(a,-b,r, n);
- }
-
- // The "Stairs" flavour produces n-1 steps of a staircase:
- // much less stupid version by paniq
- float fOpUnionStairs(float a, float b, float r, float n) {
- float s = r/n;
- float u = b-r;
- return min(min(a,b), 0.5 * (u + a + abs ((mod (u - a + s, 2 * s)) - s)));
- }
-
- // We can just call Union since stairs are symmetric.
- float fOpIntersectionStairs(float a, float b, float r, float n) {
- return -fOpUnionStairs(-a, -b, r, n);
- }
-
- float fOpDifferenceStairs(float a, float b, float r, float n) {
- return -fOpUnionStairs(-a, b, r, n);
- }
-
-
- // Similar to fOpUnionRound, but more lipschitz-y at acute angles
- // (and less so at 90 degrees). Useful when fudging around too much
- // by MediaMolecule, from Alex Evans' siggraph slides
- float fOpUnionSoft(float a, float b, float r) {
- float e = max(r - abs(a - b), 0);
- return min(a, b) - e*e*0.25/r;
- }
-
-
- // produces a cylindical pipe that runs along the intersection.
- // No objects remain, only the pipe. This is not a boolean operator.
- float fOpPipe(float a, float b, float r) {
- return length(vec2(a, b)) - r;
- }
-
- // first object gets a v-shaped engraving where it intersect the second
- float fOpEngrave(float a, float b, float r) {
- return max(a, (a + r - abs(b))*sqrt(0.5));
- }
-
- // first object gets a capenter-style groove cut out
- float fOpGroove(float a, float b, float ra, float rb) {
- return max(a, min(a + ra, rb - abs(b)));
- }
-
- // first object gets a capenter-style tongue attached
- float fOpTongue(float a, float b, float ra, float rb) {
- return min(a, max(a - ra, abs(b) - rb));
- }
|