You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

849 lines
27 KiB

11 years ago
15 years ago
  1. /*
  2. * vim:ts=4:sw=4:expandtab
  3. *
  4. * © 2010-2013 Michael Stapelberg
  5. *
  6. * See LICENSE for licensing information
  7. *
  8. */
  9. #include <stdio.h>
  10. #include <stdlib.h>
  11. #include <string.h>
  12. #include <unistd.h>
  13. #include <stdbool.h>
  14. #include <stdint.h>
  15. #include <xcb/xcb.h>
  16. #include <xcb/dpms.h>
  17. #include <err.h>
  18. #include <assert.h>
  19. #include <security/pam_appl.h>
  20. #include <getopt.h>
  21. #include <string.h>
  22. #include <ev.h>
  23. #include <sys/mman.h>
  24. #include <xkbcommon/xkbcommon.h>
  25. #include <xkbcommon/xkbcommon-x11.h>
  26. #include <cairo.h>
  27. #include <cairo/cairo-xcb.h>
  28. #include "i3lock.h"
  29. #include "xcb.h"
  30. #include "cursors.h"
  31. #include "unlock_indicator.h"
  32. #include "xinerama.h"
  33. #define TSTAMP_N_SECS(n) (n * 1.0)
  34. #define TSTAMP_N_MINS(n) (60 * TSTAMP_N_SECS(n))
  35. #define START_TIMER(timer_obj, timeout, callback) \
  36. timer_obj = start_timer(timer_obj, timeout, callback)
  37. #define STOP_TIMER(timer_obj) \
  38. timer_obj = stop_timer(timer_obj)
  39. typedef void (*ev_callback_t)(EV_P_ ev_timer *w, int revents);
  40. /* We need this for libxkbfile */
  41. char color[7] = "ffffff";
  42. int inactivity_timeout = 30;
  43. uint32_t last_resolution[2];
  44. xcb_window_t win;
  45. static xcb_cursor_t cursor;
  46. static pam_handle_t *pam_handle;
  47. int input_position = 0;
  48. /* Holds the password you enter (in UTF-8). */
  49. static char password[512];
  50. static bool beep = false;
  51. bool debug_mode = false;
  52. static bool dpms = false;
  53. bool unlock_indicator = true;
  54. static bool dont_fork = false;
  55. struct ev_loop *main_loop;
  56. static struct ev_timer *clear_pam_wrong_timeout;
  57. static struct ev_timer *clear_indicator_timeout;
  58. static struct ev_timer *dpms_timeout;
  59. static struct ev_timer *discard_passwd_timeout;
  60. extern unlock_state_t unlock_state;
  61. extern pam_state_t pam_state;
  62. static struct xkb_state *xkb_state;
  63. static struct xkb_context *xkb_context;
  64. static struct xkb_keymap *xkb_keymap;
  65. static uint8_t xkb_base_event;
  66. static uint8_t xkb_base_error;
  67. cairo_surface_t *img = NULL;
  68. bool tile = false;
  69. bool ignore_empty_password = false;
  70. bool skip_repeated_empty_password = false;
  71. /* isutf, u8_dec © 2005 Jeff Bezanson, public domain */
  72. #define isutf(c) (((c) & 0xC0) != 0x80)
  73. /*
  74. * Decrements i to point to the previous unicode glyph
  75. *
  76. */
  77. void u8_dec(char *s, int *i) {
  78. (void)(isutf(s[--(*i)]) || isutf(s[--(*i)]) || isutf(s[--(*i)]) || --(*i));
  79. }
  80. static void turn_monitors_on(void) {
  81. if (dpms)
  82. dpms_set_mode(conn, XCB_DPMS_DPMS_MODE_ON);
  83. }
  84. static void turn_monitors_off(void) {
  85. if (dpms)
  86. dpms_set_mode(conn, XCB_DPMS_DPMS_MODE_OFF);
  87. }
  88. /*
  89. * Loads the XKB keymap from the X11 server and feeds it to xkbcommon.
  90. * Necessary so that we can properly let xkbcommon track the keyboard state and
  91. * translate keypresses to utf-8.
  92. *
  93. */
  94. static bool load_keymap(void) {
  95. if (xkb_context == NULL) {
  96. if ((xkb_context = xkb_context_new(0)) == NULL) {
  97. fprintf(stderr, "[i3lock] could not create xkbcommon context\n");
  98. return false;
  99. }
  100. }
  101. if (xkb_keymap != NULL)
  102. xkb_keymap_unref(xkb_keymap);
  103. int32_t device_id = xkb_x11_get_core_keyboard_device_id(conn);
  104. DEBUG("device = %d\n", device_id);
  105. if ((xkb_keymap = xkb_x11_keymap_new_from_device(xkb_context, conn, device_id, 0)) == NULL) {
  106. fprintf(stderr, "[i3lock] xkb_x11_keymap_new_from_device failed\n");
  107. return false;
  108. }
  109. struct xkb_state *new_state =
  110. xkb_x11_state_new_from_device(xkb_keymap, conn, device_id);
  111. if (new_state == NULL) {
  112. fprintf(stderr, "[i3lock] xkb_x11_state_new_from_device failed\n");
  113. return false;
  114. }
  115. /* Get the initial modifier state to be in sync with the X server.
  116. * See https://github.com/xkbcommon/libxkbcommon/issues/1 for why we ignore
  117. * the base and latched fields. */
  118. //xkb_state_update_mask(new_state,
  119. // 0, 0, new_state->components.locked_mods,
  120. // 0, 0, new_state->components.locked_group);
  121. if (xkb_state != NULL)
  122. xkb_state_unref(xkb_state);
  123. xkb_state = new_state;
  124. return true;
  125. }
  126. /*
  127. * Clears the memory which stored the password to be a bit safer against
  128. * cold-boot attacks.
  129. *
  130. */
  131. static void clear_password_memory(void) {
  132. /* A volatile pointer to the password buffer to prevent the compiler from
  133. * optimizing this out. */
  134. volatile char *vpassword = password;
  135. for (int c = 0; c < sizeof(password); c++)
  136. /* We store a non-random pattern which consists of the (irrelevant)
  137. * index plus (!) the value of the beep variable. This prevents the
  138. * compiler from optimizing the calls away, since the value of 'beep'
  139. * is not known at compile-time. */
  140. vpassword[c] = c + (int)beep;
  141. }
  142. ev_timer* start_timer(ev_timer *timer_obj, ev_tstamp timeout, ev_callback_t callback) {
  143. if (timer_obj) {
  144. ev_timer_stop(main_loop, timer_obj);
  145. ev_timer_set(timer_obj, timeout, 0.);
  146. ev_timer_start(main_loop, timer_obj);
  147. } else {
  148. /* When there is no memory, we just don’t have a timeout. We cannot
  149. * exit() here, since that would effectively unlock the screen. */
  150. timer_obj = calloc(sizeof(struct ev_timer), 1);
  151. if (timer_obj) {
  152. ev_timer_init(timer_obj, callback, timeout, 0.);
  153. ev_timer_start(main_loop, timer_obj);
  154. }
  155. }
  156. return timer_obj;
  157. }
  158. ev_timer* stop_timer(ev_timer *timer_obj) {
  159. if (timer_obj) {
  160. ev_timer_stop(main_loop, timer_obj);
  161. free(timer_obj);
  162. }
  163. return NULL;
  164. }
  165. /*
  166. * Resets pam_state to STATE_PAM_IDLE 2 seconds after an unsuccessful
  167. * authentication event.
  168. *
  169. */
  170. static void clear_pam_wrong(EV_P_ ev_timer *w, int revents) {
  171. DEBUG("clearing pam wrong\n");
  172. pam_state = STATE_PAM_IDLE;
  173. unlock_state = STATE_STARTED;
  174. redraw_screen();
  175. /* Now free this timeout. */
  176. STOP_TIMER(clear_pam_wrong_timeout);
  177. }
  178. static void clear_indicator_cb(EV_P_ ev_timer *w, int revents) {
  179. clear_indicator();
  180. STOP_TIMER(clear_indicator_timeout);
  181. }
  182. static void clear_input(void) {
  183. input_position = 0;
  184. clear_password_memory();
  185. password[input_position] = '\0';
  186. /* Hide the unlock indicator after a bit if the password buffer is
  187. * empty. */
  188. START_TIMER(clear_indicator_timeout, 1.0, clear_indicator_cb);
  189. unlock_state = STATE_BACKSPACE_ACTIVE;
  190. redraw_screen();
  191. unlock_state = STATE_KEY_PRESSED;
  192. }
  193. static void turn_off_monitors_cb(EV_P_ ev_timer *w, int revents) {
  194. if (input_position == 0)
  195. turn_monitors_off();
  196. STOP_TIMER(dpms_timeout);
  197. }
  198. static void discard_passwd_cb(EV_P_ ev_timer *w, int revents) {
  199. clear_input();
  200. turn_monitors_off();
  201. STOP_TIMER(discard_passwd_timeout);
  202. }
  203. static void input_done(void) {
  204. STOP_TIMER(clear_pam_wrong_timeout);
  205. pam_state = STATE_PAM_VERIFY;
  206. redraw_screen();
  207. if (pam_authenticate(pam_handle, 0) == PAM_SUCCESS) {
  208. DEBUG("successfully authenticated\n");
  209. clear_password_memory();
  210. /* Turn the screen on, as it may have been turned off
  211. * on release of the 'enter' key. */
  212. turn_monitors_on();
  213. exit(0);
  214. }
  215. if (debug_mode)
  216. fprintf(stderr, "Authentication failure\n");
  217. pam_state = STATE_PAM_WRONG;
  218. clear_input();
  219. redraw_screen();
  220. /* Clear this state after 2 seconds (unless the user enters another
  221. * password during that time). */
  222. ev_now_update(main_loop);
  223. START_TIMER(clear_pam_wrong_timeout, TSTAMP_N_SECS(2), clear_pam_wrong);
  224. /* Cancel the clear_indicator_timeout, it would hide the unlock indicator
  225. * too early. */
  226. STOP_TIMER(clear_indicator_timeout);
  227. /* beep on authentication failure, if enabled */
  228. if (beep) {
  229. xcb_bell(conn, 100);
  230. xcb_flush(conn);
  231. }
  232. }
  233. /*
  234. * Called when the user releases a key. We need to leave the Mode_switch
  235. * state when the user releases the Mode_switch key.
  236. *
  237. */
  238. static void handle_key_release(xcb_key_release_event_t *event) {
  239. xkb_state_update_key(xkb_state, event->detail, XKB_KEY_UP);
  240. }
  241. static void redraw_timeout(EV_P_ ev_timer *w, int revents) {
  242. redraw_screen();
  243. STOP_TIMER(w);
  244. }
  245. static bool skip_without_validation(void) {
  246. if (input_position != 0)
  247. return false;
  248. if (skip_repeated_empty_password || ignore_empty_password)
  249. return true;
  250. return false;
  251. }
  252. /*
  253. * Handle key presses. Fixes state, then looks up the key symbol for the
  254. * given keycode, then looks up the key symbol (as UCS-2), converts it to
  255. * UTF-8 and stores it in the password array.
  256. *
  257. */
  258. static void handle_key_press(xcb_key_press_event_t *event) {
  259. xkb_keysym_t ksym;
  260. char buffer[128];
  261. int n;
  262. bool ctrl;
  263. ksym = xkb_state_key_get_one_sym(xkb_state, event->detail);
  264. ctrl = xkb_state_mod_name_is_active(xkb_state, "Control", XKB_STATE_MODS_DEPRESSED);
  265. xkb_state_update_key(xkb_state, event->detail, XKB_KEY_DOWN);
  266. /* The buffer will be null-terminated, so n >= 2 for 1 actual character. */
  267. memset(buffer, '\0', sizeof(buffer));
  268. n = xkb_keysym_to_utf8(ksym, buffer, sizeof(buffer));
  269. switch (ksym) {
  270. case XKB_KEY_Return:
  271. case XKB_KEY_KP_Enter:
  272. case XKB_KEY_XF86ScreenSaver:
  273. if (skip_without_validation()) {
  274. clear_input();
  275. return;
  276. }
  277. password[input_position] = '\0';
  278. unlock_state = STATE_KEY_PRESSED;
  279. redraw_screen();
  280. input_done();
  281. skip_repeated_empty_password = true;
  282. return;
  283. default:
  284. skip_repeated_empty_password = false;
  285. }
  286. switch (ksym) {
  287. case XKB_KEY_u:
  288. if (ctrl) {
  289. DEBUG("C-u pressed\n");
  290. clear_input();
  291. return;
  292. }
  293. break;
  294. case XKB_KEY_Escape:
  295. clear_input();
  296. return;
  297. case XKB_KEY_BackSpace:
  298. if (input_position == 0)
  299. return;
  300. /* decrement input_position to point to the previous glyph */
  301. u8_dec(password, &input_position);
  302. password[input_position] = '\0';
  303. /* Hide the unlock indicator after a bit if the password buffer is
  304. * empty. */
  305. START_TIMER(clear_indicator_timeout, 1.0, clear_indicator_cb);
  306. unlock_state = STATE_BACKSPACE_ACTIVE;
  307. redraw_screen();
  308. unlock_state = STATE_KEY_PRESSED;
  309. return;
  310. }
  311. if ((input_position + 8) >= sizeof(password))
  312. return;
  313. #if 0
  314. /* FIXME: handle all of these? */
  315. printf("is_keypad_key = %d\n", xcb_is_keypad_key(sym));
  316. printf("is_private_keypad_key = %d\n", xcb_is_private_keypad_key(sym));
  317. printf("xcb_is_cursor_key = %d\n", xcb_is_cursor_key(sym));
  318. printf("xcb_is_pf_key = %d\n", xcb_is_pf_key(sym));
  319. printf("xcb_is_function_key = %d\n", xcb_is_function_key(sym));
  320. printf("xcb_is_misc_function_key = %d\n", xcb_is_misc_function_key(sym));
  321. printf("xcb_is_modifier_key = %d\n", xcb_is_modifier_key(sym));
  322. #endif
  323. if (n < 2)
  324. return;
  325. /* store it in the password array as UTF-8 */
  326. memcpy(password+input_position, buffer, n-1);
  327. input_position += n-1;
  328. DEBUG("current password = %.*s\n", input_position, password);
  329. unlock_state = STATE_KEY_ACTIVE;
  330. redraw_screen();
  331. unlock_state = STATE_KEY_PRESSED;
  332. struct ev_timer *timeout = NULL;
  333. START_TIMER(timeout, TSTAMP_N_SECS(0.25), redraw_timeout);
  334. STOP_TIMER(clear_indicator_timeout);
  335. START_TIMER(discard_passwd_timeout, TSTAMP_N_MINS(3), discard_passwd_cb);
  336. }
  337. /*
  338. * A visibility notify event will be received when the visibility (= can the
  339. * user view the complete window) changes, so for example when a popup overlays
  340. * some area of the i3lock window.
  341. *
  342. * In this case, we raise our window on top so that the popup (or whatever is
  343. * hiding us) gets hidden.
  344. *
  345. */
  346. static void handle_visibility_notify(xcb_connection_t *conn,
  347. xcb_visibility_notify_event_t *event) {
  348. if (event->state != XCB_VISIBILITY_UNOBSCURED) {
  349. uint32_t values[] = { XCB_STACK_MODE_ABOVE };
  350. xcb_configure_window(conn, event->window, XCB_CONFIG_WINDOW_STACK_MODE, values);
  351. xcb_flush(conn);
  352. }
  353. }
  354. /*
  355. * Called when the keyboard mapping changes. We update our symbols.
  356. *
  357. */
  358. static void handle_mapping_notify(xcb_mapping_notify_event_t *event) {
  359. /* We ignore errors — if the new keymap cannot be loaded it’s better if the
  360. * screen stays locked and the user intervenes by using killall i3lock. */
  361. (void)load_keymap();
  362. }
  363. /*
  364. * Called when the properties on the root window change, e.g. when the screen
  365. * resolution changes. If so we update the window to cover the whole screen
  366. * and also redraw the image, if any.
  367. *
  368. */
  369. void handle_screen_resize(void) {
  370. xcb_get_geometry_cookie_t geomc;
  371. xcb_get_geometry_reply_t *geom;
  372. geomc = xcb_get_geometry(conn, screen->root);
  373. if ((geom = xcb_get_geometry_reply(conn, geomc, 0)) == NULL)
  374. return;
  375. if (last_resolution[0] == geom->width &&
  376. last_resolution[1] == geom->height) {
  377. free(geom);
  378. return;
  379. }
  380. last_resolution[0] = geom->width;
  381. last_resolution[1] = geom->height;
  382. free(geom);
  383. redraw_screen();
  384. uint32_t mask = XCB_CONFIG_WINDOW_WIDTH | XCB_CONFIG_WINDOW_HEIGHT;
  385. xcb_configure_window(conn, win, mask, last_resolution);
  386. xcb_flush(conn);
  387. xinerama_query_screens();
  388. redraw_screen();
  389. }
  390. /*
  391. * Callback function for PAM. We only react on password request callbacks.
  392. *
  393. */
  394. static int conv_callback(int num_msg, const struct pam_message **msg,
  395. struct pam_response **resp, void *appdata_ptr)
  396. {
  397. if (num_msg == 0)
  398. return 1;
  399. /* PAM expects an array of responses, one for each message */
  400. if ((*resp = calloc(num_msg, sizeof(struct pam_response))) == NULL) {
  401. perror("calloc");
  402. return 1;
  403. }
  404. for (int c = 0; c < num_msg; c++) {
  405. if (msg[c]->msg_style != PAM_PROMPT_ECHO_OFF &&
  406. msg[c]->msg_style != PAM_PROMPT_ECHO_ON)
  407. continue;
  408. /* return code is currently not used but should be set to zero */
  409. resp[c]->resp_retcode = 0;
  410. if ((resp[c]->resp = strdup(password)) == NULL) {
  411. perror("strdup");
  412. return 1;
  413. }
  414. }
  415. return 0;
  416. }
  417. /*
  418. * This callback is only a dummy, see xcb_prepare_cb and xcb_check_cb.
  419. * See also man libev(3): "ev_prepare" and "ev_check" - customise your event loop
  420. *
  421. */
  422. static void xcb_got_event(EV_P_ struct ev_io *w, int revents) {
  423. /* empty, because xcb_prepare_cb and xcb_check_cb are used */
  424. }
  425. /*
  426. * Flush before blocking (and waiting for new events)
  427. *
  428. */
  429. static void xcb_prepare_cb(EV_P_ ev_prepare *w, int revents) {
  430. xcb_flush(conn);
  431. }
  432. /*
  433. * Instead of polling the X connection socket we leave this to
  434. * xcb_poll_for_event() which knows better than we can ever know.
  435. *
  436. */
  437. static void xcb_check_cb(EV_P_ ev_check *w, int revents) {
  438. xcb_generic_event_t *event;
  439. while ((event = xcb_poll_for_event(conn)) != NULL) {
  440. if (event->response_type == 0) {
  441. xcb_generic_error_t *error = (xcb_generic_error_t*)event;
  442. if (debug_mode)
  443. fprintf(stderr, "X11 Error received! sequence 0x%x, error_code = %d\n",
  444. error->sequence, error->error_code);
  445. free(event);
  446. continue;
  447. }
  448. /* Strip off the highest bit (set if the event is generated) */
  449. int type = (event->response_type & 0x7F);
  450. switch (type) {
  451. case XCB_KEY_PRESS:
  452. handle_key_press((xcb_key_press_event_t*)event);
  453. break;
  454. case XCB_KEY_RELEASE:
  455. handle_key_release((xcb_key_release_event_t*)event);
  456. /* If this was the backspace or escape key we are back at an
  457. * empty input, so turn off the screen if DPMS is enabled, but
  458. * only do that after some timeout: maybe user mistyped and
  459. * will type again right away */
  460. START_TIMER(dpms_timeout, TSTAMP_N_SECS(inactivity_timeout),
  461. turn_off_monitors_cb);
  462. break;
  463. case XCB_VISIBILITY_NOTIFY:
  464. handle_visibility_notify(conn, (xcb_visibility_notify_event_t*)event);
  465. break;
  466. case XCB_MAP_NOTIFY:
  467. if (!dont_fork) {
  468. /* After the first MapNotify, we never fork again. We don’t
  469. * expect to get another MapNotify, but better be sure */
  470. dont_fork = true;
  471. /* In the parent process, we exit */
  472. if (fork() != 0)
  473. exit(0);
  474. ev_loop_fork(EV_DEFAULT);
  475. }
  476. break;
  477. case XCB_MAPPING_NOTIFY:
  478. handle_mapping_notify((xcb_mapping_notify_event_t*)event);
  479. break;
  480. case XCB_CONFIGURE_NOTIFY:
  481. handle_screen_resize();
  482. break;
  483. }
  484. free(event);
  485. }
  486. }
  487. /*
  488. * This function is called from a fork()ed child and will raise the i3lock
  489. * window when the window is obscured, even when the main i3lock process is
  490. * blocked due to PAM.
  491. *
  492. */
  493. static void raise_loop(xcb_window_t window) {
  494. xcb_connection_t *conn;
  495. xcb_generic_event_t *event;
  496. int screens;
  497. if ((conn = xcb_connect(NULL, &screens)) == NULL ||
  498. xcb_connection_has_error(conn))
  499. errx(EXIT_FAILURE, "Cannot open display\n");
  500. /* We need to know about the window being obscured or getting destroyed. */
  501. xcb_change_window_attributes(conn, window, XCB_CW_EVENT_MASK,
  502. (uint32_t[]){
  503. XCB_EVENT_MASK_VISIBILITY_CHANGE |
  504. XCB_EVENT_MASK_STRUCTURE_NOTIFY
  505. });
  506. xcb_flush(conn);
  507. DEBUG("Watching window 0x%08x\n", window);
  508. while ((event = xcb_wait_for_event(conn)) != NULL) {
  509. if (event->response_type == 0) {
  510. xcb_generic_error_t *error = (xcb_generic_error_t*)event;
  511. DEBUG("X11 Error received! sequence 0x%x, error_code = %d\n",
  512. error->sequence, error->error_code);
  513. free(event);
  514. continue;
  515. }
  516. /* Strip off the highest bit (set if the event is generated) */
  517. int type = (event->response_type & 0x7F);
  518. DEBUG("Read event of type %d\n", type);
  519. switch (type) {
  520. case XCB_VISIBILITY_NOTIFY:
  521. handle_visibility_notify(conn, (xcb_visibility_notify_event_t*)event);
  522. break;
  523. case XCB_UNMAP_NOTIFY:
  524. DEBUG("UnmapNotify for 0x%08x\n", (((xcb_unmap_notify_event_t*)event)->window));
  525. if (((xcb_unmap_notify_event_t*)event)->window == window)
  526. exit(EXIT_SUCCESS);
  527. break;
  528. case XCB_DESTROY_NOTIFY:
  529. DEBUG("DestroyNotify for 0x%08x\n", (((xcb_destroy_notify_event_t*)event)->window));
  530. if (((xcb_destroy_notify_event_t*)event)->window == window)
  531. exit(EXIT_SUCCESS);
  532. break;
  533. default:
  534. DEBUG("Unhandled event type %d\n", type);
  535. break;
  536. }
  537. free(event);
  538. }
  539. }
  540. int main(int argc, char *argv[]) {
  541. char *username;
  542. char *image_path = NULL;
  543. int ret;
  544. struct pam_conv conv = {conv_callback, NULL};
  545. int curs_choice = CURS_NONE;
  546. int o;
  547. int optind = 0;
  548. struct option longopts[] = {
  549. {"version", no_argument, NULL, 'v'},
  550. {"nofork", no_argument, NULL, 'n'},
  551. {"beep", no_argument, NULL, 'b'},
  552. {"dpms", no_argument, NULL, 'd'},
  553. {"color", required_argument, NULL, 'c'},
  554. {"pointer", required_argument, NULL , 'p'},
  555. {"debug", no_argument, NULL, 0},
  556. {"help", no_argument, NULL, 'h'},
  557. {"no-unlock-indicator", no_argument, NULL, 'u'},
  558. {"image", required_argument, NULL, 'i'},
  559. {"tiling", no_argument, NULL, 't'},
  560. {"ignore-empty-password", no_argument, NULL, 'e'},
  561. {"inactivity-timeout", required_argument, NULL, 'I'},
  562. {NULL, no_argument, NULL, 0}
  563. };
  564. if ((username = getenv("USER")) == NULL)
  565. errx(EXIT_FAILURE, "USER environment variable not set, please set it.\n");
  566. char *optstring = "hvnbdc:p:ui:teI:";
  567. while ((o = getopt_long(argc, argv, optstring, longopts, &optind)) != -1) {
  568. switch (o) {
  569. case 'v':
  570. errx(EXIT_SUCCESS, "version " VERSION " © 2010-2012 Michael Stapelberg");
  571. case 'n':
  572. dont_fork = true;
  573. break;
  574. case 'b':
  575. beep = true;
  576. break;
  577. case 'd':
  578. dpms = true;
  579. break;
  580. case 'I': {
  581. int time = 0;
  582. if (sscanf(optarg, "%d", &time) != 1 || time < 0)
  583. errx(EXIT_FAILURE, "invalid timeout, it must be a positive integer\n");
  584. inactivity_timeout = time;
  585. break;
  586. }
  587. case 'c': {
  588. char *arg = optarg;
  589. /* Skip # if present */
  590. if (arg[0] == '#')
  591. arg++;
  592. if (strlen(arg) != 6 || sscanf(arg, "%06[0-9a-fA-F]", color) != 1)
  593. errx(EXIT_FAILURE, "color is invalid, it must be given in 3-byte hexadecimal format: rrggbb\n");
  594. break;
  595. }
  596. case 'u':
  597. unlock_indicator = false;
  598. break;
  599. case 'i':
  600. image_path = strdup(optarg);
  601. break;
  602. case 't':
  603. tile = true;
  604. break;
  605. case 'p':
  606. if (!strcmp(optarg, "win")) {
  607. curs_choice = CURS_WIN;
  608. } else if (!strcmp(optarg, "default")) {
  609. curs_choice = CURS_DEFAULT;
  610. } else {
  611. errx(EXIT_FAILURE, "i3lock: Invalid pointer type given. Expected one of \"win\" or \"default\".\n");
  612. }
  613. break;
  614. case 'e':
  615. ignore_empty_password = true;
  616. break;
  617. case 0:
  618. if (strcmp(longopts[optind].name, "debug") == 0)
  619. debug_mode = true;
  620. break;
  621. default:
  622. errx(EXIT_FAILURE, "Syntax: i3lock [-v] [-n] [-b] [-d] [-c color] [-u] [-p win|default]"
  623. " [-i image.png] [-t] [-e] [-I]"
  624. );
  625. }
  626. }
  627. /* We need (relatively) random numbers for highlighting a random part of
  628. * the unlock indicator upon keypresses. */
  629. srand(time(NULL));
  630. /* Initialize PAM */
  631. ret = pam_start("i3lock", username, &conv, &pam_handle);
  632. if (ret != PAM_SUCCESS)
  633. errx(EXIT_FAILURE, "PAM: %s", pam_strerror(pam_handle, ret));
  634. /* Using mlock() as non-super-user seems only possible in Linux. Users of other
  635. * operating systems should use encrypted swap/no swap (or remove the ifdef and
  636. * run i3lock as super-user). */
  637. #if defined(__linux__)
  638. /* Lock the area where we store the password in memory, we don’t want it to
  639. * be swapped to disk. Since Linux 2.6.9, this does not require any
  640. * privileges, just enough bytes in the RLIMIT_MEMLOCK limit. */
  641. if (mlock(password, sizeof(password)) != 0)
  642. err(EXIT_FAILURE, "Could not lock page in memory, check RLIMIT_MEMLOCK");
  643. #endif
  644. /* Double checking that connection is good and operatable with xcb */
  645. int screennr;
  646. if ((conn = xcb_connect(NULL, &screennr)) == NULL ||
  647. xcb_connection_has_error(conn))
  648. errx(EXIT_FAILURE, "Could not connect to X11, maybe you need to set DISPLAY?");
  649. if (xkb_x11_setup_xkb_extension(conn,
  650. XKB_X11_MIN_MAJOR_XKB_VERSION,
  651. XKB_X11_MIN_MINOR_XKB_VERSION,
  652. 0,
  653. NULL,
  654. NULL,
  655. &xkb_base_event,
  656. &xkb_base_error) != 1)
  657. errx(EXIT_FAILURE, "Could not setup XKB extension.");
  658. /* When we cannot initially load the keymap, we better exit */
  659. if (!load_keymap())
  660. errx(EXIT_FAILURE, "Could not load keymap");
  661. xinerama_init();
  662. xinerama_query_screens();
  663. /* if DPMS is enabled, check if the X server really supports it */
  664. if (dpms) {
  665. xcb_dpms_capable_cookie_t dpmsc = xcb_dpms_capable(conn);
  666. xcb_dpms_capable_reply_t *dpmsr;
  667. if ((dpmsr = xcb_dpms_capable_reply(conn, dpmsc, NULL))) {
  668. if (!dpmsr->capable) {
  669. if (debug_mode)
  670. fprintf(stderr, "Disabling DPMS, X server not DPMS capable\n");
  671. dpms = false;
  672. }
  673. free(dpmsr);
  674. }
  675. }
  676. screen = xcb_setup_roots_iterator(xcb_get_setup(conn)).data;
  677. last_resolution[0] = screen->width_in_pixels;
  678. last_resolution[1] = screen->height_in_pixels;
  679. xcb_change_window_attributes(conn, screen->root, XCB_CW_EVENT_MASK,
  680. (uint32_t[]){ XCB_EVENT_MASK_STRUCTURE_NOTIFY });
  681. if (image_path) {
  682. /* Create a pixmap to render on, fill it with the background color */
  683. img = cairo_image_surface_create_from_png(image_path);
  684. /* In case loading failed, we just pretend no -i was specified. */
  685. if (cairo_surface_status(img) != CAIRO_STATUS_SUCCESS) {
  686. fprintf(stderr, "Could not load image \"%s\": %s\n",
  687. image_path, cairo_status_to_string(cairo_surface_status(img)));
  688. img = NULL;
  689. }
  690. }
  691. /* Pixmap on which the image is rendered to (if any) */
  692. xcb_pixmap_t bg_pixmap = draw_image(last_resolution);
  693. /* open the fullscreen window, already with the correct pixmap in place */
  694. win = open_fullscreen_window(conn, screen, color, bg_pixmap);
  695. xcb_free_pixmap(conn, bg_pixmap);
  696. pid_t pid = fork();
  697. /* The pid == -1 case is intentionally ignored here:
  698. * While the child process is useful for preventing other windows from
  699. * popping up while i3lock blocks, it is not critical. */
  700. if (pid == 0) {
  701. /* Child */
  702. close(xcb_get_file_descriptor(conn));
  703. raise_loop(win);
  704. exit(EXIT_SUCCESS);
  705. }
  706. cursor = create_cursor(conn, screen, win, curs_choice);
  707. grab_pointer_and_keyboard(conn, screen, cursor);
  708. /* Load the keymap again to sync the current modifier state. Since we first
  709. * loaded the keymap, there might have been changes, but starting from now,
  710. * we should get all key presses/releases due to having grabbed the
  711. * keyboard. */
  712. (void)load_keymap();
  713. turn_monitors_off();
  714. /* Initialize the libev event loop. */
  715. main_loop = EV_DEFAULT;
  716. if (main_loop == NULL)
  717. errx(EXIT_FAILURE, "Could not initialize libev. Bad LIBEV_FLAGS?\n");
  718. struct ev_io *xcb_watcher = calloc(sizeof(struct ev_io), 1);
  719. struct ev_check *xcb_check = calloc(sizeof(struct ev_check), 1);
  720. struct ev_prepare *xcb_prepare = calloc(sizeof(struct ev_prepare), 1);
  721. ev_io_init(xcb_watcher, xcb_got_event, xcb_get_file_descriptor(conn), EV_READ);
  722. ev_io_start(main_loop, xcb_watcher);
  723. ev_check_init(xcb_check, xcb_check_cb);
  724. ev_check_start(main_loop, xcb_check);
  725. ev_prepare_init(xcb_prepare, xcb_prepare_cb);
  726. ev_prepare_start(main_loop, xcb_prepare);
  727. /* Invoke the event callback once to catch all the events which were
  728. * received up until now. ev will only pick up new events (when the X11
  729. * file descriptor becomes readable). */
  730. ev_invoke(main_loop, xcb_check, 0);
  731. ev_loop(main_loop, 0);
  732. }